Omslagsbild från Amazon
Bild från Amazon.com

Machine learning : the art and science of algorithms that make sense of data / Peter Flach.

Av: Materialtyp: TextTextSpråk: Engelska Utgivningsuppgift: Cambridge : Cambridge University Press, 2012Beskrivning: xvii, 396 pages illustrations 25 cmInnehållstyp:
  • text
Medietyp:
  • unmediated
Bärartyp:
  • volume
ISBN:
  • 9781107096394
  • 1107096391
  • 9781107422223
  • 1107422221
Ämnen: Genre/form: DDK-klassifikation:
  • 006.31 23
Library of Congress (LC) klassifikationskod:
  • Q325.5 .F53 2012
Annan klassifikation:
  • Pud
Innehåll:
1. The ingredients of machine learning -- 2. Binary classification and related tasks -- 3. Beyond binary classification -- 4. Concept learning -- 5. Tree models -- 6. Rule models -- 7. Linear models -- 8. Distance-based models -- 9. Probabilistic models -- 10. Features -- 11. Model ensembles -- 12. Machine learning experiments -- Epilogue: where to go from here.
Abstrakt: 'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike.
Betyg
    Medelbetyg: 0.0 (0 röster)
Bestånd
Exemplartyp Aktuellt bibliotek Hyllsignatur Status Förfallodatum Streckkod Exemplarreservationer
Bok (Hemlån) Campus Karlskrona 006.3 Tillgänglig 080041486800
Bok (Hemlån) Campus Karlskrona 006.3 Tillgänglig 080047626402
Bok (Hemlån) Campus Karlskrona 006.3 Utlånad 2025-01-28 080047624376
Bok (Dagslån) Campus Karlskrona Referens 006.3 Tillgänglig 080047624375
Bok (Hemlån) Campus Karlskrona 006.3 Utlånad 2025-01-28 080041486801
Antal reservationer: 0

Includes bibliographical references (pages 367-381) and index.

1. The ingredients of machine learning -- 2. Binary classification and related tasks -- 3. Beyond binary classification -- 4. Concept learning -- 5. Tree models -- 6. Rule models -- 7. Linear models -- 8. Distance-based models -- 9. Probabilistic models -- 10. Features -- 11. Model ensembles -- 12. Machine learning experiments -- Epilogue: where to go from here.

'Machine Learning' brings together all the state-of-the-art methods for making sense of data. With hundreds of worked examples and explanatory figures, it explains the principles behind these methods in an intuitive yet precise manner and will appeal to novice and experienced readers alike.

Adress: Biblioteket, Blekinge Tekniska Högskola, 371 79 Karlskrona
Telefon: 0455 - 38 51 01
E-post: biblioteket@bth.se
Ansvarig för sidan: Biblioteket