Cover image

Data mining : practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall

By: Witten, Ian H
Contributor(s): Frank, Eibe | Hall, Mark A
Material type: TextTextSeries: [Morgan Kaufmann series in data management systems]Publisher: Burlington, MA Morgan Kaufmann cop. 2011Edition: 3. edDescription: xxxiii, 629 p. ill. 24 cmISBN: 9780123748560 (pbk.)Subject(s): Data Mining | Data mining | Data mining | Data miningDDC classification: 006.312 Other classification: 006.3 | Pud
Contents:
PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining.Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode
Book (Same day loan) Gräsvik
Referens
006.3 (Browse shelf) Available 080041486716
Book (loan) Gräsvik
006.3 (Browse shelf) Available 080041486715

Includes bibliographical references and index

PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining.Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer

There are no comments on this title.

to post a comment.

Adress: Biblioteket, Blekinge Tekniska Högskola, 371 79 Karlskrona
Telefon: 0455 - 38 51 01
E-post: biblioteket@bth.se
Ansvarig för sidan: Biblioteket