Omslagsbild från Amazon
Bild från Amazon.com

Data mining : practical machine learning tools and techniques / Ian H. Witten, Eibe Frank, Mark A. Hall

Av: Medverkande(n): Materialtyp: TextTextSerie: [Morgan Kaufmann series in data management systems]Utgivningsinformation: Burlington, MA Morgan Kaufmann cop. 2011Utgåva: 3. edBeskrivning: xxxiii, 629 p. ill. 24 cmISBN:
  • 9780123748560 (pbk.)
Ämnen: DDK-klassifikation:
  • 006.312 22
Annan klassifikation:
  • 006.3
  • Pud
Innehåll:
PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining.Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer
Betyg
    Medelbetyg: 0.0 (0 röster)
Bestånd
Exemplartyp Aktuellt bibliotek Hyllsignatur Status Förfallodatum Streckkod Exemplarreservationer
Bok (Dagslån) Campus Karlskrona Referens 006.3 Tillgänglig 080041486716
Bok (Hemlån) Campus Karlskrona 006.3 Tillgänglig 080041486715
Antal reservationer: 0

Includes bibliographical references and index

PART I: Machine Learning Tools and Techniques. Ch 1. What's It All About? Ch 2. Input: Concepts, Instances, Attributes. Ch 3. Output: Knowledge Representation. Ch 4. Algorithms: The Basic Methods. Ch 5. Credibility: Evaluating What's Been Learned. PART II: Advanced Data Mining.Ch 6. Implementations: Real Machine Learning Schemes. Ch 7. Data Transformation. Ch 8. Ensemble Learning. Ch 9. Moving On: Applications and Beyond. PART III: The Weka Data MiningWorkbench. Ch 10. Introduction to Weka. Ch 11. The Explorer. Ch 12. The Knowledge Flow Interface. Ch 13. The Experimenter. Ch 14 The Command-Line Interface. Ch 15. Embedded Machine Learning. Ch 16. Writing New Learning Schemes. Ch 17. Tutorial Exercises for the Weka Explorer

Adress: Biblioteket, Blekinge Tekniska Högskola, 371 79 Karlskrona
Telefon: 0455 - 38 51 01
E-post: biblioteket@bth.se
Ansvarig för sidan: Biblioteket